News & Events

//Untangling the social dynamics of water

Untangling the social dynamics of water

By | 2019-06-11T19:36:50+00:00 June 11th, 2019|Students|

Water operator partnerships, or WOPs, bring together water utility employees from different countries to improve public water delivery and sanitation services. “In these partnerships, interpersonal dynamics are so important,” explains Andrea Beck, “and I’m really passionate about hearing people’s stories.” Beck, a PhD candidate in the Department of Urban Studies and Planning (DUSP) and a 2018-19 J-WAFS Fellow for Water Solutions, is studying the dynamics of water operator partnerships to understand how they create mutual benefit for water utilities worldwide.

WOPs bring together utilities from different countries as peer-to-peer partnerships to encourage mutual learning. Topics covered by these partnerships range from operational issues to finance and human resources.  WOPs were conceived by a United Nations advisory board in 2006 as an alternative to public-private partnerships and have since gained traction across Europe, Africa, Asia, and Latin America, with over 200 partnerships formed to date. Beck’s research focuses on the development of WOPs in global policy circles, differences between WOPs and public-private partnerships, and conditions for successful partnerships.

Beck’s interest in water issues and African culture began long before she came to MIT. After finishing high school, Beck volunteered at a cultural center in rural Malawi, where she developed an appreciation for cultural immersion. Her undergraduate and master’s work focused on water resources and trans-boundary water cooperation; during her PhD studies at MIT, Beck shifted her focus to urban water issues, seeking a topic that more personally affected people at smaller scale. Water issues “have always been close to my heart,” she explains. When Beck returned to Malawi for her doctoral fieldwork in 2018, she found her urban water perspective “eye-opening.”  “I was suddenly seeing all of the valves in the ground. I was looking for pipes,” she explained. “If I hadn’t studied that here [at DUSP], I would have been blind” to those elements.

Read More on MIT News